Richardson extrapolation of iterated discrete projection methods for eigenvalue approximation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projection Methods for Nonlinear Sparse Eigenvalue Problems

This paper surveys numerical methods for general sparse nonlinear eigenvalue problems with special emphasis on iterative projection methods like Jacobi–Davidson, Arnoldi or rational Krylov methods and the automated multi–level substructuring. We do not review the rich literature on polynomial eigenproblems which take advantage of a linearization of the problem.

متن کامل

Multilevel Richardson-Romberg extrapolation

We propose and analyze a Multilevel Richardson-Romberg (ML2R) estimator which combines the higher order bias cancellation of the Multistep Richardson-Romberg method introduced in [Pag07] and the variance control resulting from the stratification introduced in the Multilevel Monte Carlo (MLMC) method (see [Gil08, Hei01]). Thus, in standard frameworks like discretization schemes of diffusion proc...

متن کامل

Factors of Safety for Richardson Extrapolation

A factor of safety method for quantitative estimates of grid-spacing and time-step uncertainties for solution verification is developed. It removes the two deficiencies of the grid convergence index and correction factor methods, namely, unreasonably small uncertainty when the estimated order of accuracy using the Richardson extrapolation method is greater than the theoretical order of accuracy...

متن کامل

Continuous Discrete Variable Optimization of Structures Using Approximation Methods

Optimum design of structures is achieved while the design variables are continuous and discrete. To reduce the computational work involved in the optimization process, all the functions that are expensive to evaluate, are approximated. To approximate these functions, a semi quadratic function is employed. Only the diagonal terms of the Hessian matrix are used and these elements are estimated fr...

متن کامل

Discrete Legendre Projection Methods for the Eigenvalue Problem of a Compact Integral Operator

In this paper, we consider the discrete Legendre projection methods to solve the eigenvalue problem. Using sufficiently accurate numerical quadrature rule, we obtain the error bounds for gap between the spectral subspaces, eigenvalues and iterated eigenvectors for the eigenvalue problem in 2 L norm. We also obtain the superconvergence results for eigenvalues and iterated eigenvectors in discret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2009

ISSN: 0377-0427

DOI: 10.1016/j.cam.2007.12.019